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Abstract. We consider electrons of effective spinS on a chain with nearest-neighbour hopping
t constrained by the excluded multiple occupancy of the lattice sites, and spin exchangeJ

between neighbouring sites. The spin space of the model is SU(2S + 1) invariant, and at the
supersymmetric point,J = t , the charge and the spin play identical roles forming an integrable
SU(2S + 2) superalgebra. Without compromising the integrability we introduce a Coqblin–
Schrieffer-like impurity of spinS, which interacts with the correlated conduction states of the
host. The discrete Betheansatzequations diagonalizing the host with impurity are derived and
the ground-state properties of the impurity are studied as a function of the Kondo exchange
coupling. An undercompensated impurity of spinS embedded into a chain of interacting spin-1

2
electrons is also discussed.

1. Introduction

Impurities play an important role in strongly correlated electron systems, especially in
one dimension (1D), where even a small quantity of defects may change the properties
drastically. Interactions in the host are particularly important in 1D, where the system
changes from a normal Fermi liquid to a Luttinger liquid [1]. The effects of the interactions
on the properties of an impurity have been investigated by means of bosonization,
renormalization groups, ‘poor man’s’ scaling, boundary conformal field theory [2], and
the Betheansatz[3–7].

An impurity introduced into an integrable host usually destroys the integrability. The
interaction between the host and impurity has to have a special form in order to preserve
the integrability. Andrei and Johannesson [8] (see also references [9, 10]) incorporated
a magnetic impurity of arbitrary spin into the isotropic spin-1

2 Heisenberg chain without
spoiling the integrability. It has been argued [11] that this model, however, corresponds to
a non-generic fixed point.

In recent papers we succeeded in constructing 1D integrable correlated electron lattice
models with a magnetic impurity via the quantum inverse scattering method [4–7]. Several
combinations of hosts, e.g. two supersymmetric variants of thet–J model (a brief discussion
of these host models is given in the appendix) and the Hubbard model, and impurities,
e.g. exchange and intermediate-valence impurities, have been considered. The scattering
matrix of the electrons in the host and the scattering matrix of electrons with the impurity
have to satisfy the triangular Yang–Baxter relation. This is the necessary and sufficient
condition for the integrability, which imposes restrictions on the impurity. The overall
picture emerging from this study is as follows.
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(i) Correlations in the host strongly couple to the charge sector of the impurity without
affecting the spin sector. The screening of the impurity spin is then unchanged with respect
to free electrons.

(ii) The correlations drive the impurity away from integer-valence into the mixed-valence
region with a concomitant increase of the Kondo temperature. A fraction of an itinerant
electron (hole) is localized at the impurity site.

(iii) The impurity is placed on a link of the chain and interacts with both neighbouring
lattice sites. Hence, the impurity interacts with both partial waves, i.e. with states of even
and odd parity with respect to the impurity site, in contrast with the situation in a non-
interacting host, where the coupling is only with even-parity (s-wave) conduction states.

(iv) The coupling parameter of the impurity and host is the impurity rapidity,p0, which
on the one hand determines the Kondo temperature and on the other hand introduces a
chirality (right–left asymmetry) into the chain.

(v) The impurity is a forward scatterer only, and hence does not give rise to bound
states in the system.

None of the cases studied so far involve orbital degeneracy. In this paper we extend this
investigation to an impurity with orbital degrees of freedom. The simplest generalization
is the degenerate Kondo exchange problem or Coqblin–Schrieffer model. In section 2 we
introduce the scattering matrices, obtain the discrete Betheansatzequations diagonalizing
the interacting lattice gas with impurity, and discuss the ground-state properties of the
impurity. In section 3 we address the situation of an impurity of spinS embedded into an
interacting lattice gas of electrons with spin1

2. Concluding remarks follow in section 4.

2. An interacting host with Coqblin–Schrieffer impurity

2.1. The host

The host consists of electrons on a chain with nearest-neighbour hopping and excluded
multiple occupancy of the sites. The electrons can haveN = 2S + 1 spin components and
interact with each other via a nearest-neighbour exchange interaction. The Hamiltonian is
given by [12, 13]

H0 = −t
∑
iσ

P (c
†
iσ ci+1σ + c†i+1σ ciσ )P + J

∑
iσσ ′

c
†
i+1σ c

†
iσ ′ciσ ci+1σ ′ + J

∑
i

nini+1 (1)

wherec†iσ creates an electron of spin componentσ at sitei, σ = −S, . . . , S, P is a projector
that excludes the multiple occupancy of each site,ni =

∑
σ c
†
iσ ciσ is the number operator

for site i, andJ is the antiferromagnetic exchange coupling. The hoppingt can be equated
to 1.

The spin space of model (1) is SU(2S+1) invariant by construction for all values ofJ/t .
In particular, forJ = t the charges play an identical role to the spin degrees of freedom.
This leads to an SU(2S + 2)-invariant superalgebra (all degrees of freedom are boson-like)
and to the integrability of the model. Due to this supersymmetry the sets of wavenumbers
of the incoming and outgoing particles are identical [12, 13], and there is a scattering phase
shift if two electrons are in a spin-triplet state, but to no phase shift if they are in a singlet
state. This situation is then reversed with respect to the degenerate supersymmetrict–J
model (corresponding to a graded permutation algebra of 2S + 1 fermions and one boson),
where two electrons in a spin-singlet state scatter, while they do not scatter in the triplet
state. A more detailed discussion can be found in the appendix and in references [12, 13].
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In view of the supersymmetry with SU(2S+2) invariance, the Hamiltonian (1) can also
be written in terms of spin-(S + 1

2) operators as a Heisenberg chain [12]:

HS =
∑
i

(Pi,i+1+ 1) (2)

wherePi,i+1 permutes the 2S + 2 spin components of the sitesi and i + 1.
The scattering matrix for two electrons with wavenumbersk1 andk2 is [13]

X̂(k1, k2) = − (p1− p2)Î + iP̂

p1− p2− i
(3)

wherep = 1
2 tan(k/2), andÎ andP̂ are the identity and permutation operators, respectively.

This scattering matrix satisfies the triangular Yang–Baxter relation, which is the necessary
and sufficient condition for the integrability of equation (1).

2.2. The impurity

We introduce the impurity via its scattering matrix,Ŝ, describing its interaction with the
itinerant electrons. If the integrability of the SU(2S + 2)-invariant t–J model is to be
preserved,Ŝ has to satisfy the triangular Yang–Baxter relation withX̂ [14, 15], which is
the case for

Ŝ(p − p0) = (p − p0)Î + iP̂

p − p0+ i
(4)

whereÎ and P̂ are the identity and permutation operators (permuting the spin components
of the impurity and the itinerant electron), respectively. Herep0 is the rapidity of the
impurity, which is related to the Kondo exchange coupling.

The impurity when embedded into the lattice ofNa sites interacts only with the two
nearest-neighbour sites. Without loss of generality we may assume that the impurity is on
the link joining the sitesNa and 1. The general form of the Hamiltonian describing the
interaction between the impurity and the itinerant electrons is [4–7]

Himp = g1(p0)(PNa,imp + Pimp,1+ {PNa,imp,Pimp,1})
+ g2(p0)PNa,1+ ig3(p0)[(PNa,imp + Pimp,1),PNa,1] (5)

whereg1(p0) andg2(p0) are even functions ofp0, while g3(p0) is odd and the square (curly)
brackets denote a commutator (an anti-commutator). HerePNa,1, PNa,imp, andPimp,1 are
(2S + 2)-component permutators as defined in equation (2). The parity and time-reversal
symmetries are separately broken by the impurity, but the PT symmetry is preserved.

The impurity Hamiltonian is more transparent in the continuum limit. As the lattice
constant tends to zero the lattice Hamiltonian reduces to a standard Luttinger liquid.
We linearize the kinetic energy in the momentum around the Fermi level and restrict
ourselves to low-energy excitations. Assume that the two Fermi points are given by
±kFS related to±pFS by pFS = 1

2 tan(kFS/2), then the group velocity of the electrons is
v = [2 cos(kFS/2)]−2. Identifying |p0|/v with the inverse of the Kondo exchange coupling
J we essentially obtain the scattering matrix for the Coqblin–Schrieffer model [14, 16–18]:

Himp = J
∑
σ,σ ′

d†σ dσ ′

∫
dx δ(x)c†σ ′(x)cσ (x) (6)

where the interaction is with even-parity states with respect to the impurity. Odd-parity
states only affect the impurity indirectly via the Luttinger liquid host. The Luttinger
liquid properties of the interacting host are the main difference from the Coqblin–Schrieffer
impurity in a free-electron gas.
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2.3. Bethe ansatz equations

Consider nowNe itinerant electrons and the impurity in a box ofNa sites with periodic
boundary conditions. Following standard procedures this problem is solved by means of
(2S + 1) nested Betheansätze. Each Betheansatzgives rise to a set of rapidities, i.e.{pj },
j = 1, . . . , Ne, for the charges, and{3(l)

α }, α = 1, . . . , ml , l = 1, . . . ,2S for the spin
degrees of freedom. IfNk, k = 1, . . . ,2S + 1, are the numbers of particles with spin
componentk−S−1,N1 > N2 > · · · > N2S+1, then theml are defined asml =

∑2S+1
k=l+1Nk.

The rapidities satisfy the following discrete Betheansatzequations:[
pj + i/2

pj − i/2

]Na
= (−1)Ne

Ne∏
l=1

pj − pl + i

pj − pl − i

m1∏
β=1

pj −3(1)
β − i/2

pj −3(1)
β + i/2

j = 1, . . . , Ne (7)

∏
τ=±1

ml+τ∏
β=1

3(l)
α −3(l+τ)

β + i/2

3
(l)
α −3(l+τ)

β − i/2

= −
ml∏
β=1

3(l)
α −3(l)

β + i

3
(l)
α −3(l)

β − i
α = 1, . . . , ml l = 1, . . . ,2S − 1 (8)

3(2S)
α − p0+ i/2

3
(2S)
α − p0− i/2

m2S−1∏
β=1

3(2S)
α −3(2S−1)

β + i/2

3
(2S)
α −3(2S−1)

β − i/2

= −
m2S∏
β=1

3(2S)
α −3(2S)

β + i

3
(2S)
α −3(2S)

β − i
α = 1, . . . , m2S. (9)

Herem0 = Ne and the set{3(0)
α } is identical to the set{pj }. The first factor on the left-hand

side of equation (9) arises from the impurity. The remaining factors correspond to the
supersymmetric SU(2S+2)-invariantt–J model without impurity. The impurity acts like a
distinguishable particle, i.e. a particle in a fictitiousN + 1 spin component, whose rapidity
is not selfconsistently determined and does not explicitly appear in the expression for the
energy. The energy and the magnetization of the system are given by [13]

E = 2Ne − 2
Ne∑
j=1

1/2

p2
j + 1/4

Sz =
2S∑
l=0

(S − l)(ml −ml+1)+ S
(10)

with m2S+1 ≡ 0. If we suppress the charge fluctuations in equations (7) and (8), i.e. equating
pj = 0 for all j on the right-hand side of (7) and on the left-hand side of (8), and setting
|p0| = v/Ĵ (Ĵ being the Kondo coupling), then we essentially (except that there are two
partial waves) recover the Betheansatzequations of the degenerate Kondo problem.

For the ground state all rapidities are real and densely distributed. The distribution
functions for the charge and spinon rapidities,ρ(p) and σ (l)(3), for l = 1, . . . ,2S, and
their ‘holes’,ρh(p) andσ (l)h (3), are introduced in the standard way. The density functions
satisfy the following linear integral equations:

ρh(p)+ ρ(p)+
∫ Q

−Q
dp′ a2(p − p′)ρ(p′) =

∫ B1

−B1

d3 a1(p −3)σ (1)(3)+ a1(p) (11)

σ
(l)
h (3)+ σ (l)(3)+

∫ Bl

−Bl
d3′ a2(3−3′)σ (l)(3′)
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=
∑
τ=±1

∫ Bl+τ

−Bl+τ
d3′ a1(3−3′)σ (l+τ)(3′) l = 1, . . . ,2S − 1 (12)

σ
(2S)
h (3)+ σ (2S)(3)+

∫ B2S

−B2S

d3′ a2(3−3′)σ (2S)(3′)

=
∫ B2S−1

−B2S−1

d3′ a1(3−3′)σ (2S−1)(3′)+ 1

Na
a1(3− p0) (13)

wherean(x) = (n/2π)/(x2 + (n/2)2). In zero magnetic field we haveBl = ∞, and all of
the spinon bands are full. With increasing magnetic field theBl decrease monotonically. In
zero field the number of electrons (charges) in the system is an increasing function ofQ.
The energy, and the number of electrons with each spin component are given by

E/Na = 2
∫ Q

−Q
dp ρ(p)[1− πa1(p)]

Ne/Na = n =
∫ Q

−Q
dp ρ(p) (14)

ml/Na =
∫ Bl

−Bl
d3 σ(l)(3)

andml =
∑2S+1

k=l+1Nk. In other words, theNk determine the integration limitsQ andBl .
Equations (11)−(13) are linear in the densities and have driving terms arising from the
itinerant electrons and from the impurity. Hence, the density functions can be separated
into a host and an impurity contribution. The distribution densities for the host are even
functions of the rapidities, while those for the impurity are asymmetric due to the chiral
character of the impurity.

2.4. Results

In the absence of external magnetic field all of the spin-rapidity bands are completely
filled, i.e. σ (l)h (3) ≡ 0, so the spinon density functions can be eliminated from equations
(11)−(13) via Fourier transformation. The problem is then reduced to the solution of one
integral equation of the Fredholm type forρ(p):

ρh(p)+ ρ(p)+
∫ Q

−Q
dp′ K2S+2(p − p′)ρ(p′) = a1(p)+ 1

Na
K1(p − p0) (15)

Kl(p) =
∫

dω

2π
exp(ipω − l|ω|/2) sinh(ω/2)

/
sinh(Nω/2) (16)

where againN = 2S + 1.
Equation (15) can be solved analytically in the limitsQ→ 0 andQ→∞. Q grows

monotonically with the number of electrons in the system, so

06 Ne

Na
6 N

N + 1
06 nimp 6

1

N + 1
. (17)

For intermediate values ofQ, the integral equation (15) has to be solved numerically
by discretizing the integral. For the calculation displayed in figure 1 we fixedQ so
Ne/Na = 0.5 for eachN . The impurity localizes a fraction of a conduction electrons,
nimp, which is a decreasing function ofp0 andN , but an increasing function ofQ (the
number of electrons in the host). The localization of this charge is driven by the interactions
in the conduction band and the Kondo exchange coupling. The impurity has then to some
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Figure 1. (a) The number of itinerant charges localized at the impurity site, (b) the ground-
state energy of the impurity, and (c) the logarithm of the spin susceptibility as a function of
|p0| for four spin valuesS = 1

2 , 1, 3
2 , and 2. |p0| corresponds to 1/(J ρF ), whereJ is the

Kondo exchange coupling andρF the density of states. The host has 0.5 electrons per site,
corresponding toQ = 0.594, 0.541, 0.523, and 0.515 forN = 2, 3, 4, and 5, respectively.

degree mixed-valence character, the admixed configuration having one electron more than
the original impurity state of spinS. The valence admixture and the formation of the Kondo
singlet yields an energy gainEimp. Eimp tracks thep0-, N -, andQ-dependences ofnimp.
As S →∞ (the classical spin limit),nimp also tends to zero (no valence fluctuations).

The magnetization of the impurity is obtained from the integral equations obeyed by
the spinon densitiesσ (l):

σ (l)(3)+
2S∑
k=1

∫
|3′|>Bk

d3′ Gk,l(3−3′)σ (k)h (3′)

=
∫ Q

−Q
dp FN−l(3− p)ρ(p)+ 1

Na
Fl(3− p0) (18)
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whereGk,l(3) andFl(3) are the Fourier transforms of

Ĝk,l(ω) = exp(|ω|/2)sinh[(N −max(k, l))ω/2] sinh[min(k, l)ω/2]

sinh(Nω/2) sinh(ω/2)

F̂l(ω) = sinh(lω/2)
/

sinh(Nω/2). (19)

In a small magnetic field,Bk � Q for all k, so the feedback of the magnetic field to the
charge distributions is of orderH 2, and can be neglected. AsH → 0 we obtain

ml = Na N − l
N

∫ Q

−Q
dp ρ(p)+ l

N
(20)

which leads to a vanishing magnetization, i.e. a singlet state for both impurity and host. In a
small but finite magnetic field, equations (18) can be reduced to a sequence of Wiener–Hopf
integral equations (the spinon Fermi points atBk and−Bk are very far apart, and do not
interfere), and all of the driving terms are proportional to exp(−2π |3|/N). The latter is the
consequence of the (marginal) Fermi liquid properties of the system. The proportionality
constants are the magnetic susceptibility. The ratio of the susceptibility of the impurity and
the host is then [14, 15]

χimp

χhost
=
(

e2π |p0|/N +
∫ Q

−Q
dp e2πp/Nρimp(p)

)/(∫ Q

−Q
dp e2πp/Nρhost (p)

)
. (21)

The first term in the numerator is the expected Kondo exponential, which is usually much
larger than the susceptibility induced by the valence fluctuations (the term involving the
integral overρimp). The logarithm of the susceptibility is shown in figure 1(c) as a function
of |p0|. The small deviations from the straight line at smallp0 are then due to the valence
admixture.

3. Undercompensated Kondo impurity

3.1. Bethe ansatz equations

We now consider an undercompensated Kondo impurity embedded into the correlated host
introduced in section 2 withN = 2. The spin space is SU(2) invariant, and at the
supersymmetric point the combined spin and charge space for the host is generated by
a SU(3)-invariant superalgebra. The impurity is defined by the scattering matrix of the
itinerant electrons with the impurity [19]:

Sσσ
′

MM ′(p − p0) = a(p − p0)
(p − p0+ i/2)δMM ′δσσ ′ + iSMM ′ · σσσ ′

p − p0+ i

a(p − p0) =
[

p2+ 1

p2+ (S + 1/2)2

]1/2 (22)

whereσ is the vector of Pauli matrices for the host and theS are the spin matrices of
the impurity of spinS and spin componentsM (M ′). The scattering matrix is unitary and
satisfies the triangular Yang–Baxter relation with the scattering matrix of the host. The
interaction Hamiltonian is essentially the spin exchange between an impurity of spinS and
itinerant electrons with spin12, and is a generalization of the impurity model considered in
section 2.

The model is diagonalized by means of two nested Betheansätze, each giving rise to
one set of rapidities. Using the same notation as in the previous section we obtain the
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following discrete Betheansatzequations:

exp(−iφ)

[
pj + i/2

pj − i/2

]Na
= (−1)Ne

Ne∏
l=1

pj − pl + i

pj − pl − i

M∗∏
β=1

pj −3β − i/2

pj −3β + i/2
(23)

where

φ = arctan

(
2(pj − p0)

2S + 1

)
− arctan(pj − p0) j = 1, . . . , Ne

and

3α − p0+ iS

3α − p0− iS

Ne∏
j=1

3α − pj + i/2

3α − pj − i/2
= −

M∗∏
β=1

3α −3β + i

3α −3β − i
α = 1, . . . ,M∗. (24)

HereM∗ is the number of reversed spins. The first factors on the left-hand sides of equations
(23) and (24) arise from the impurity. The energy is still given by equation (10), and the
magnetization isSz = 1

2Ne −M∗ + S. Suppressing the charge fluctuations, i.e. equating
pj = 0 for all j on the right-hand side of (23) and on the left-hand side of (24), we recover
(except that there are two partial waves) the Betheansatzequations of the traditional Kondo
problem.

The distribution functions for the charge and spinon rapidities for the ground state satisfy

ρh(p)+ ρ(p)+
∫ Q

−Q
dp′ a2(p − p′)ρ(p′)

=
∫ B

−B
d3 a1(p −3)σ(3)+ a1(p)+ 1

2Na
[a2(p − p0)− a2S+1(p − p0)]

(25)

σh(3)+ σ(3)+
∫ B

−B
d3′ a2(3−3′)σ (3′)

=
∫ Q

−Q
dp a1(3− p)ρ(p)+ 1

Na
a1(3− p0). (26)

In zero magnetic field,B = ∞, andB decreases monotonically with increasing magnetic
field. The energy and the total number of electrons are still given by equation (15), while
the impurity magnetization is

Simpz = 1

2

∫ Q

−Q
dp ρimp(p)−

∫ B

−B
d3 σimp(3)+ S = S − 1

2
+ 1

2

∫
|3|〉B

d3 σimp,h(3).

(27)

Hence, the zero-field ground-state magnetization isS − 1
2.

3.2. Results

For the zero-field ground state the band of spin rapidities is completely filled, soσh(3) ≡ 0,
andσ(3) can be eliminated from equations (25) and (26) via Fourier transformation. The
resulting Fredholm equation satisfied byρ(p) is

ρh(p)+ ρ(p)+
∫ Q

−Q
dp′ G3(p − p′)ρ(p′)

= a1(p)+ 1

Na
G2S(p − p0)+ 1

2Na
[a2(p − p0)− a2S+1(p − p0)] (28)
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Figure 2. (a) The number of itinerant charges localized at the impurity site, and (b) the ground-
state energy of the impurity as a function of|p0| for four impurity spin valuesS = 1

2 , 1, 3
2 and

2. (c) The logarithm of the spin susceptibility forS = 1
2 as a function of|p0|. For all other spin

values the impurity ground state is not a singlet.|p0| is inversely proportional to the Kondo
exchange coupling. The host has 1/3 of an electron per site, corresponding toQ = 0.310.

Gl(p) =
∫

dω

2π
exp(ipω − l|ω|/2) / [2 cosh(ω/2)]. (29)

The density functions can be separated into a host and an impurity part. The host
contribution is identical to the one discussed in section 2 for the Coqblin–Schrieffer model,
if N is set equal to 2. The impurity driving terms are, however, different, because this
impurity has an undercompensated spin. By numerically solving the integral equation it is
straightforward to obtain the fraction of an electron localized at the impurity site, and the
impurity ground-state energy. The fraction of a localized electron,nimp, and the energy
are displayed in figures 2(a) and 2(b) as functions of|p0| for Ne/Na = 1/3 and several
impurity spin values.nimp decreases monotonically with|p0|, i.e. it is a maximum when
the impurity rapidity is on resonance with the conduction states, and gradually decreases
as thep0 gets off resonance. Here|p0| is inversely proportional to the Kondo exchange.
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The dependence ofnimp on the impurity spin is not monotonic, as a consequence of the last
two terms (arising from the normalization of the impurity scattering matrix, equation (22))
on the right-hand side of equation (28). In contrast to the case for the Coqblin–Schrieffer
model,nimp does not tend to zero asS →∞ (the classical limit for the impurity, but the
host still has fluctuations). The binding energy for the spin compensation follows a similar
trend tonimp.

Sincenimp 6= 0, the impurity is in a mixed-valence state of two magnetic configurations,
of spin S andS − 1

2, respectively. On the lattice the impurity Hamiltonian has the general
form (5). In the continuum limit the Hamiltonian for the impurity placed at the origin can
be written as [20, 21]

Himp = ε
∑
M1

|S1M1〉〈S1M1| + V
∑
σMM1

(Mσ |M1)

∫
dx δ(x)

× [c†σ (x)|SM〉〈S1M1| + |S1M1〉〈SM|cσ (x)] (30)

where the bra and ket denote the impurity states,S1 = S − 1
2, ε is a function of|p0|/v (v

is the Fermi velocity) and is the energy difference between the two configurations relative
to the Fermi level, and

(Mσ |M + σ) = (SM; 1
2σ |S 1

2 (S − 1
2) M + σ) (31)

is a Clebsch–Gordan coefficient. The completeness condition for the impurity requires∑
M1

|S1M1〉〈S1M1| +
∑
M

|SM〉〈SM| = 1. (32)

The impurity in the non-interacting host has two free parameters, namelyε and the
hybridization V , so charge and spin fluctuations can occur on different energy scales.
In contrast, the integrability in the presence of interactions in the host restrictsV to
V 2 = (2S + 1)/v, so the impurity (besides the value ofS) has only one free parameter,
namelyp0. In the non-interacting host,nimp varies withε between 0 and 1, while in the
interacting host the maximumnimp is 1/3. This difference arises from the normalization
term a(p − p0) in the impurity scattering matrix.

The ground-state magnetization is obtained from equation (26), which is a Fredholm
integral equation forσ with two driving terms, namely, an independent term depending on
p0 and a term involvingρ. The magnetization is then the sum of the magnetization due
to the internal degrees of freedom of the impurity and the one arising from the valence
admixture. ForS = 1

2 the ground state is a singlet, and hence the zero-field susceptibility
is finite, and given by

χimp

χhost
=
(

eπ |p0| +
∫ Q

−Q
dp eπpρimp(p)

)/(∫ Q

−Q
dp eπpρhost (p)

)
S = 1

2. (33)

The Kondo exponential in the numerator is the dominating feature, as shown in the plot of
ln(χimp/χhost ) as a function of|p0| (see figure 2(c)).

ForS > 1
2 the ground state is magnetic, so the susceptibility diverges asH → 0. We can

then neglect the contribution of the valence fluctuations to the magnetization (for magnetic
fields much smaller than the bandwidth), and the Fredholm equation can be reduced to a
hierarchical sequence of Wiener–Hopf integral equations, of which the leading contribution
is given by (y(3) = σimp(3− B))

y(3)+ yh(3)−
∫ 0

−∞
d3′ G1(3−3′)yh(3′) = G2S−1(3− B + |p0|). (34)
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Adopting the parametrization|p0| − B = (1/π) ln(H/TK), where TK is the Kondo
temperature, the leading contribution to the magnetization is a universal function ofH/TK ,
and is identical to that of the ordinary Kondo problem without interactions in the host.
The next-order contribution in the hierarchical sequence is smaller by a factor 1/B and
also depends on|p0| + B, i.e. the bandwidth explicitly enters as a third energy scale (in
addition toTK andH ). This non-universal dependence arises from the interference of the
two Fermi points of the spinon band (backward scattering). In the limit of very large|p0|,
i.e. TK/D � 1 andH/D � 1, the non-leading contributions in the Wiener–Hopf sequence
become small and can be neglected.

The universal dependence of the magnetization is given by [14, 15, 17]

Mimp = (S − 1
2)[1+ 1

2L
−1− 1

4 ln(L)/L2+ · · ·] H � TK, S >
1
2 (35)

Mimp = S[1− 1
2L
−1− 1

4 ln(L)/L2+ · · ·] H � TK (36)

whereL = |ln(H/TK)|. Hence, in a small field the impurity has an asymptotically free spin
S − 1

2, while in strong magnetic fields the effective spin isS, weakly coupled (logarithms
characterize asymptotic freedom) to the itinerant electrons. For intermediate fields the mag-
netization smoothly interpolates between these two limits.

4. Conclusions

We considered (i) a Coqblin–Schrieffer impurity of spinS and (ii) an undercompensated
Kondo impurity of spinS embedded into a one-dimensional lattice with strongly interacting
electrons. The integrable model providing the background of itinerant electrons for (i) is
the SU(2S + 2)-invariant and for (ii) the SU(3)-invariant supersymmetrict–J model. The
translational invariance is broken by introducing the additional spinS, but the integrability
is preserved by construction. The impurity is introduced via the scattering matrix, equations
(4) and (22) for (i) and (ii) respectively, which obeys the triangular Yang–Baxter relation
with the scattering matrix of the host. This is the necessary and sufficient condition for
the integrability of the model with impurity. The interaction of the itinerant electrons with
the impurity is via spin exchange with the two neighbouring sites of the impurity. The
exchange is proportional to the inverse of the absolute value of the impurity rapidity. This
rapidity introduces a chirality into the system, so the impurity interacts with both partial
waves (even- and odd-parity states with respect to the impurity site).

We derived the Betheansatzequations diagonalizing the host with impurity, and studied
the ground-state properties of the impurity. The properties of the host influence the impurity,
so some impurity properties are then different from those of an impurity in an uncorrelated
host. The impurity localizes a fraction of an itinerant electron and acquires mixed-valence
character. For the Coqblin–Schrieffer model this fraction is constrained to the interval
0 6 nimp 6 1/(2S + 2), while for the undercompensated spin (case (ii)) we obtain
06 nimp 6 1/3. In both casesnimp monotonically decreases with|p0|, and for|p0| → ∞,
i.e. when the Kondo exchange coupling tends to zero,nimp → 0. Hence, in this limit the
impurity has integer valence and we recover the traditional Kondo problem.

There are two contributions to the magnetic properties, namely the Kondo magnetization
and the magnetization arising from the valence admixture. The latter is always smaller than
the Kondo effect and can be neglected for most purposes. The integral equations governing
the spin-rapidity distributions are of the Fredholm type. Each rapidity band has two Fermi
points, which however in the Kondo limit (large|p0|) do not interfere. In this limit the
Fredholm equations can be reduced to a Wiener–Hopf integral equation, and the traditional
Coqblin–Schrieffer and Kondo problems are recovered.
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The two models studied in this paper confirm the general results derived previously
for other combinations of interacting host and magnetic impurity [4–7]. The trends are the
same, namely (a) the interactions in the host drive the impurity into a mixed-valence state,
(b) the Kondo exchange coupling is parametrized by the impurity rapidity, (c) the impurity
is on a link of the chain and interacts with both neighbouring sites (i.e. with even- and
odd-parity states), and (d) the impurity is a forward scatterer only and does not produce
a bound state split off from the continuum. The latter property is clearly a non-universal
feature of our model. All of the other properties are believed to be general and generic.
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Appendix: The host Hamiltonian

The t–J–V model is defined as

HtJV = −t
∑

iσP (c†iσ ci+1σ + c†i+1σ ciσ )P

+ J
∑
iσσ ′

c
†
i+1σSσσ ′ci+1σ ′ · c†iσ ′Sσ ′σ ciσ + V

∑
i

nini+1 (A1)

wherec†iσ creates an electron of spin componentσ = ± 1
2 at the sitei, P is a projector

excluding the multiple occupancy of each site,S is the vector of spin-12 operators, andni is
the number operator at sitei. As a consequence of supersymmetries, the model is integrable
for 2t = ±J at (i) V = − 1

4J and (ii) V = 3
4J [12, 13]. Point (i) corresponds to a phase

shift if two scattering electrons form a spin singlet and to no phase shift if they are in a
triplet state. On the other hand, case (ii) represents the situation where there is no scattering
in the singlet state and there is a scattering phase shift if the electrons are in a triplet state.

In equation (A1) the model is formulated in terms of electron fermion operators.
Alternatively, we may consider the three allowed states at each site, namely an up- or
down-spin electron and the holon (empty site). For case (ii) these three states correspond
to hard-core bosons, i.e. the spinons are identical to the holons. This can be represented
in terms of Hubbard projection operators as a BBB (three bosons) superalgebra, which has
SU(3) symmetry. On the other hand, for case (i) the spin states act as fermions, while the
holon is still a boson, but are otherwise identical [22, 23]. This is known as a graded FFB
superalgebra and denoted as SU(2, 1).

The model used in this paper, equation (1), is the extension of case (ii) toN spin
degrees of freedom. There are nowN +1 states per site, all being hard-core bosons, so the
symmetry is SU(N + 1). The supersymmetric point now corresponds toJ = ±t = ±V .
On the other hand, the Hamiltonian corresponding to the extension of case (i) toN spin
degrees of freedom (FNB) is again Hamiltonian (1), but with a changed sign for the last
term.
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